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Abstract
We consider the Hirota equation (the discrete analogue of the generalized Toda
system) over a finite field. We present the general algebro-geometric method
of construction of solutions of the equation. As an example we construct
analogues of the multisoliton solutions for which the wavefunctions and the τ -
function can be found using rational functions. Within the class of multisoliton
solutions we isolate generalized breather-type solutions which have no direct
counterparts in the complex field case.

PACS numbers: 02.30.Ik, 02.10.−v, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cellular automata are mathematical models of physical systems in which space and time
variables are discrete, and physical quantities take only a finite number of values [34]. In
spite of a simple formulation they are capable of describing a wide variety of phenomena,
for example, traffic flow, immune systems, flow through porous media, fluid dynamics and
ferromagnetism. Due to their completely discrete nature, cellular automata are naturally
suitable for computer simulations. However, in this field there are not so many exact analytical
results providing solutions with a given global behaviour. The aim of this paper is to present
a general method of construction of solutions to the cellular automaton associated with the
Hirota equation.

The Hirota equation [18], the integrable discretization of the generalized Toda system
[27], is one of the most important soliton equations. Its various limits give rise to a
variety of integrable equations, moreover it is the basic system for studying solvable quantum
models [21].
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Like many other integrable systems the Hirota equation has a simple geometric
interpretation. In this paper, we will use the following (geometric) form of the Hirota equation:

τm(n1, n2)τm(n1 + 1, n2 + 1)

= τm(n1 + 1, n2)τm(n1, n2 + 1) − τm−1(n1 + 1, n2)τm+1(n1, n2 + 1). (1)

One can describe it as the equation governing the so-called Laplace sequence of two-
dimensional lattices of planar quadrilaterals [7, 10]. This interpretation can be embedded
into a more general theory of multidimensional lattices of planar quadrilaterals and their
transformations [12–15]. It was noted in [8, 9] that geometric constructions in the integrable
discrete geometry (in particular, those leading to the Hirota equation) should work also on
the level of finite geometries [19], i.e. geometries over finite fields [24]. This observation has
been developed in this paper.

The question of construction of integrable systems with solutions taking values in a
discrete set (soliton cellular automata) is not new and it was undertaken in a number of papers,
see, for example, [5, 6, 28, 33]. In particular, in [5] the other Hirota equation (equivalent to
the discrete sine-Gordon equation [17]) is investigated in the context of finite fields.

In this paper, we present the general method of finding solutions of the Hirota equation (1)
over finite fields by using algebro-geometric methods, standard in a complex domain in the
soliton theory [3, 22]. We change, however, the field of definition of the underlying algebraic
curves from complex numbers to a finite field (see also earlier algebro-geometric papers
[2, 16, 29, 32] where such a possibility was considered).

It turns out that algebraic geometry over finite fields has recently become very important
in practical use, especially in modern approaches to public key cryptography [20] and in the
theory of error correcting codes [31]. With respect to the last application we would like
to mention [30] where the dynamics of the finite Toda molecule (a reduction of the Hirota
equation) over finite fields was studied from the point of view of a decoding algorithm.

We do not present here a direct connection of the objects of this paper with the integrable
discrete geometry over finite fields. This connection becomes clear when the approach to
the Hirota equation presented here (see also [22]) is compared with the results of [1, 11, 12],
where the methods of algebraic geometry over the field of complex numbers have been applied
to construct integrable geometric lattices.

The layout of this paper is as follows. In section 2 we present the general algebro-
geometric scheme for construction of solutions of the Hirota equation. Section 3 is devoted
to the construction of a multisoliton solution on an algebraic curve starting from the vacuum
solution. Finally, in section 4 we give in explicit form the solutions of the Hirota equation
for the background algebraic curve being the projective line. In particular, we present the
mechanism (based on the action of the Galois group) of generation of generalized breather-
type solutions and discuss the periodicity of the solutions.

2. Solutions of the Hirota equation from algebraic curves over finite fields

This section is motivated by an algebro-geometric (over the complex field) approach to the
Hirota equation (in a different form) [22] and by [1, 11, 12] on the application of algebro-
geometric methods to integrable discrete geometry. It turns out that the basic ideas of the
algebro-geometric approach to soliton theory can be transferred to the level of integrable
systems in finite fields. The notions and results forming the theory of algebraic curves over
finite fields which we use here can be found in [31].

Consider an algebraic projective curve, absolutely irreducible, nonsingular, of genus g,
defined over the finite field K = Fq with q elements, where q is a power of a prime integer p.
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We denote by CK the set of K-rational points of the curve. We denote by K the algebraic
closure of K, i.e. K = ⋃∞

�=1 Fq� , and by C
K

the corresponding (infinite) set of K-rational
points of the curve. The action of the Galois group G(K/K) (of automorphisms of K which
are identity on K) extends naturally to the action on C

K
.

Let us choose:

1. two pairs of points ai, bi ∈ CK, i = 1, 2;
2. N points cα ∈ C

K
, α = 1, . . . , N , which satisfy the following K-rationality condition:

∀σ ∈ G(K/K) σ (cα) = cα′ .

3. N pairs of points dβ, eβ ∈ C
K

, β = 1, . . . , N , which satisfy the following K-rationality
condition:

∀σ ∈ G(K/K) : σ({dβ, eβ}) = {dβ ′, eβ ′ }. (2)

4. g points fγ ∈ C
K
, γ = 1, . . . , g, which satisfy the following K-rationality condition:

∀σ ∈ G(K/K) σ (fγ ) = fγ ′ .

5. the infinity point h∞ ∈ CK.

Remark. We consider here only the generic case and assume that all the points used in the
construction are generic and distinct. In particular, genericity assumption implies that the
divisor D = ∑g

γ=1 fγ is non-special.

Remark. It is enough to the check the K-rationality conditions in any extension field L ⊃ K

of rationality of all the points used in the construction.

Definition 1. Fix K-rational local parameters ti at bi, i = 1, 2. For any integers n1, n2,m ∈ Z

define the wavefunction ψ1,m(n1, n2) as a rational function with the following properties:

1. It has a pole of order at most n1 + m + 1 at b1 and a pole of order at most n2 − m at b2.
2. Its first nontrivial coefficient of the expansion in t1 at b1 is normalized to 1.
3. It has zeros of order at least n1 at a1, and of order at least n2 at a2.
4. It has at most simple poles at points cα, α = 1, . . . , N .
5. It has zero at least of the first order at the infinity point h∞.
6. It has at most simple poles at points fγ , γ = 1, . . . , g.
7. It satisfies N constraints

ψ1,m(n1, n2)(dβ) = ψ1,m(n1, n2)(eβ) β = 1, . . . , N. (3)

For the same set of points we define the wavefunction ψ2,m(n1, n2) as a rational function
which differs from the function ψ1,m(n1, n2) only in the properties 1 and 2.

12. It has a pole of order at most n1 + m at b1 and it has a pole of order at most n2 − m + 1
at b2.

22. Its first nontrivial coefficient of the expansion in t2 at b2 is normalized to 1.

Remark. The functions ψi,m(n1, n2) are K-rational, which follows from K-rationality
conditions of the sets of points in their definition.

Remark. As usual, zero (pole) of a negative order means pole (zero) of the corresponding
positive order. Correspondingly one should interchange the expressions ‘at most’ and ‘at least’
coming before orders of poles and zeros.

Proposition 1. The wavefunctions ψi,m(n1, n2) are unique.
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Proof. We show this for the first function. By the Riemann–Roch theorem the dimension
(over K) of the divisor

N∑
α=1

cα +
g∑

γ=1

fγ − h∞ − n1a1 − n2a2 + (n1 + 1 + m)b1 + (n2 − m)b2

is equal to N + 1. Under the genericity assumption the N constraints (3) and the normalization
condition at b1 remove the freedom. �
Corollary 2. In the next section we show that, starting from the wavefunctions for N = 0,
one can construct the functions for arbitrary N.

Remark. To make subsequent formulae more transparent, from now on we will frequently
skip the dependence on the parameters n1, n2.

In the generic case, which we assume in the following, when the order of the pole of ψ1,m at b1

is n1 +m+1 and the order of the pole of ψ2,m at b2 is n1 −m+1, we denote by Q12,m(n1, n2) the
first nontrivial coefficient of expansion of ψ1,m at b2, and by Q21,m(n1, n2) the first nontrivial
coefficient of expansion of ψ2,m at b1, i.e.

ψ1,m = 1

t
n2−m
2

(Q12,m + · · ·) ψ2,m = 1

t
n1+m
1

(Q21,m + · · ·).

Remark. The functions Q12,m and Q21,m take values in the field K of the definition of the
curve.

Denote by Ti the operator of translation in the variable ni, i = 1, 2, for example,
T1ψ2,m(n1, n2) = ψ2,m(n1 + 1, n2).

Proposition 3. The function ψ1,m satisfies equations

T2ψ1,m − ψ1,m = (T2Q12,m)ψ2,m (4)

ψ1,m+1 − T1ψ1,m = −T1Q12,m

Q12,m

ψ1,m (5)

ψ1,m−1 = 1

Q21,m

ψ2,m. (6)

The analogous system for ψ2,m is obtained by exchanging indices 1 and 2 and reversing the
shift in the discrete variable m:

T1ψ2,m − ψ2,m = (T1Q21,m)ψ1,m (7)

ψ2,m−1 − T2ψ2,m = −T2Q21,m

Q21,m

ψ2,m (8)

ψ2,m+1 = 1

Q12,m

ψ1,m. (9)

Proof. To prove the first equation (4) note that the left-hand side has all the properties of the
function ψ2,m except for the normalization and must therefore be proportional to ψ2,m. The
coefficient of proportionality can be fixed by comparing the expansions at b2. Other equations
can be proved in the same way. �

Fix K-rational local parameters t̃ i at ai, i = 1, 2. In the generic case when the order of
ψi,m at ai is ni , we denote by ρi,m(n1, n2) the first nontrivial coefficients of the expansion of
ψi,m at ai , i.e.
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ψi,m = t̃
ni

i (ρi,m + · · ·).
Similarly, in the generic case when the order of ψi,m at aj , j �= i, is nj , we denote by
χij,m(n1, n2) the first nontrivial coefficients of the expansion of ψi,m at aj , i.e.

ψi,m = t̃
ni

j (χij,m + · · ·) i �= j.

Proposition 4. There exists a K-valued potential (the τ -function) defined (up to a constant)
by formulae

T1τm = ρ1,mτm (10)

T2τm = ρ2,mτm (11)

τm+1 = (−1)n1+n2Q12,mτm. (12)

Proof. The first terms in the expansion of equations (4) and (7) at a1 give

T2ρ1,m − ρ1,m = (T2Q12,m)χ21,m 0 − χ21,m = (T1Q21,m)ρ1

which combined together give

T2ρ1,m = (1 − (T2Q12,m)(T1Q21,m))ρ1,m. (13)

Similarly, but changing the expansion point to a2 we obtain

T1ρ2,m = (1 − (T2Q12,m)(T1Q21,m))ρ2,m.

Both equations imply

(T2ρ1,m)ρ2,m = (T1ρ2,m)ρ1,m

which is the compatibility condition of equations (10) and (11).
Expansion of equation (5) at a1 gives

ρ1,m+1 = −T1Q12,m

Q12,m

ρ1,m (14)

which is the compatibility condition of equations (10) and (12). Finally, by comparing
equations (6) and (9) we obtain

Q21,m+1 = 1

Q12,m

(15)

which, combined with the following consequence of expansion of (8) at a2

ρ2,m−1 = −T2Q21,m

Q21,m

ρ2,m

gives the compatibility condition of equations (11) and (12). �

Corollary 5. Equation (13) written in terms of the τ -function reads

τmT1T2τm = T1τmT2τm − T1τm−1T2τm+1 (16)

which is the Hirota equation [18].

Corollary 6. The compatibility condition of equations (13) and (14) written in terms of the
function Q12,m reads

T1T2Q12,m

T2Q12,m

− T1Q12,m

Q12,m

= T1T2Q12,m

T1Q12,m−1
− T2Q12,m+1

Q12,m

. (17)
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3. Construction of solutions using vacuum functions

The results of this section were motivated by papers on the fundamental transformation of
quadrilateral lattices in a vectorial formulation [15, 25, 26] and on the algebro-geometric
interpretation of this transformation [11, 12].

In the case N = 0 let us add the superscript 0 to all functions defined above and call them
the vacuum functions. The functions for arbitrary N can be constructed with the help of N
new functions, which we define below.

Definition 2. Fix local parameters tα at cα, α = 1, . . . , N . For any α define the function φ0
α,m

by the following conditions:

1. It has a pole of order at most n1 + m at b1 and a pole of order at most n2 − m at b2.
2. It has zeros of order at least n1 at a1, and of order at least n2 at a2.
3. It has at most a simple pole at the point cα and the first nontrivial coefficient of the

expansion in tα at cα is normalized to 1.
4. It has zero at least of the first order at the infinity point h∞.
5. It has at most simple poles at points fγ , γ = 1, . . . , g.

Remark. The function φ0
α,m is unique but usually it is not K-rational.

Lemma 7. Denote by ψ0
i,m(d,e), i = 1, 2, the column with N entries of the form[

ψ0
i,m(d,e)

]
β

= ψ0
i,m(dβ) − ψ0

i,m(eβ) β = 1, . . . , N,

denote by φ0
A,m the row with N entries[

φ0
A,m

]
α

= φ0
α,m α = 1, . . . , N

and denote by φ0
A,m(d,e) the N × N matrix whose element in row α and column β is[
φ0

A,m(d,e)
]
αβ

= φ0
α,m(dβ) − φ0

α,m(eβ) α, β = 1, . . . , N.

Then the wavefunctions ψi,m read

ψi,m = ψ0
i,m − φ0

A,m

[
φ0

A,m(d,e)
]−1

ψ0
i,m(d,e). (18)

Proof. Denote the right-hand side of equation (18) by ψ̂0
i,m. By building the column ψ̂0

i,m(d,e)

with N entries of the form ψ̂0
i,m(dβ) − ψ̂0

i,m(eβ) we can easily show that ψ̂0
i,m(d,e) = 0. This

demonstrates that the function ψ̂0
i,m satisfies constraints (3). One can check that ψ̂0

i,m also
satisfies other properties which define uniquely the function ψi,m. �

In the generic case denote by H 0
i,α,m the first nontrivial coefficient of expansion of the function

φ0
α,m in the uniformization parameter ti at bi , for example,

φ0
α,m = 1

t
n1+m
1

(
H 0

1,α,m + · · · ).

Lemma 8. The corresponding expressions for Qij,m, i �= j , and for ρi,m read

Qij,m = Q0
ij,m − H 0

j,A,m

[
φ0

A,m(d,e)
]−1

ψ0
i,m(d,e) i �= j (19)

ρi,m = ρ0
i,m

(
1 +

(
TiH

0
i,A,m

)[
φ0

A,m(d,e)
]−1

ψ0
i,m(d,e)

)
(20)

where H 0
i,A,m is the row with N entries H 0

i,α,m.
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Proof. Because equation (19) can be obtained by expansion of formula (18) at bj , only
equation (20) needs an explanation. Note first the equation

Tiφ
0
α,m − φ0

α,m = (
TiH

0
i,α,m

)
ψ0

i,m (21)

which can be shown in the same way as the equations of proposition 3. Denote by F 0
i,α,m the

first nontrivial coefficient of expansion of φ0
α,m at ai , for example

φ0
α,m = 1

t̃
n1
1

(
F 0

1,α,m + · · · ).
Expansion of equation (18) at ai gives

ρ0
i,m

(
TiH

0
i,α,m

) = −F 0
i,α,m

which concludes the proof. �

We will use the following result, which can be proved by induction with respect to the
dimension of the vector space V.

Lemma 9. Given u ∈ V and v∗ ∈ V
∗, if 1V is the identity operator on V then

det(1V + u ⊗ v∗) = 1 + 〈v∗,u〉.

Proposition 10. Using the above notation the τ -function can be constructed by the following
formula:

τm = τ 0
m det φ0

A,m(d,e). (22)

Proof. Note that equation (21) implies
[
φ0

A,m(d,e)
]−1

Tiφ
0
A,m(d,e) = 1

K
N +

([
φ0

A,m(d,e)
]−1

ψ0
i,m(d,e)

) ⊗ (
TiH

0
i,A,m

)
which gives, by lemma 9,

det Tiφ
0
A,m(d,e)

det φ0
A,m(d,e)

= 1 +
(
TiH

0
i,A,m

)[
φ0

A,m(d,e)
]−1

ψ0
i,m(d,e). (23)

Comparing equation (23) with equation (20) and taking into account equations (10), (11) we
obtain

det Tiφ
0
A,m(d,e)

det φ0
A,m(d,e)

= Tiτm/Tiτ
0
m

τm/τ 0
m

. (24)

Note the following equation:

φ0
α,m+1 − φ0

α,m = −H 0
2,α,m

Q0
12,m

ψ0
1,m

which can be shown in the same way as the equations of proposition 3. It implies that

[
φ0

A,m(d,e)
]−1

φ0
A,m+1(d,e) = 1

K
N − 1

Q0
12,m

([
φ0

A,m(d,e)
]−1

ψ0
1,m(d,e)

) ⊗ (
H 0

2,A,m

)

which gives

det φ0
A,m+1(d,e)

det φ0
A,m(d,e)

= 1 − 1

Q0
12,m

H 0
2,A,m

[
φ0

A,m(d,e)
]−1

ψ0
1,m(d,e). (25)
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Comparing equation (25) with equation (19) and taking into account equation (12) we obtain

det φ0
A,m+1(d,e)

det φ0
A,m(d,e)

= τm+1/τ
0
m+1

τm/τ 0
m

(26)

which, together with equation (24), concludes the proof. �

Corollary 11. Note that equation (22) is valid up to a (nonessential) change of the initial value
of the τ -function, which is due to the introduction of the integration constant from formulae
(24) and (26).

Corollary 12. Starting with K-valued function τ 0
m and the local parameters tα at cα chosen

in a consistent way with the action of the Galois group G(K/K) on C
K

we obtain K-valued
function τm.

4. Multisoliton solutions

We present here explicit formulae for the vacuum functions in the simplest case g = 0.
Then with the help of these expressions we present some examples of N-soliton solutions. In
constructing the vacuum functions we will use the standard parameter t on the projective line
P(K) and we put h∞ = ∞.

Explicit forms of the wavefunctions read

ψ0
1,m = 1

(t − b1)n1+1+m

(t − a1)
n1(t − a2)

n2(b1 − b2)
n2−m

(b1 − a1)n1(b1 − a2)n2(t − b2)n2−m

ψ0
2,m = 1

(t − b2)n2+1−m

(b2 − b1)
n1+m(t − a1)

n1(t − a2)
n2

(t − b1)n1+m(b2 − a1)n1(b2 − a2)n2

which give formulae for the functions Q0
12,m and Q0

21,m,

Q0
12,m = (−1)n2−m

(b2 − b1)n1−n2+1+2m

(b2 − a1)
n1(b2 − a2)

n2

(b1 − a1)n1(b1 − a2)n2

Q0
21,m = (−1)n1+m

(b1 − b2)n2−n1+1−2m

(b1 − a1)
n1(b1 − a2)

n2

(b2 − a1)n1(b2 − a2)n2

and for the functions ρ1,m and ρ2,m,

ρ0
1,m = (−1)n1

(a1 − b1)2n1+1+m

(a1 − a2)
n2(b1 − b2)

n2−m

(b1 − a2)n2(a1 − b2)n2−m

ρ0
2,m = (−1)n2

(a2 − b2)2n2+1−m

(b2 − b1)
n1+m(a2 − a1)

n1

(a2 − b1)n1+m(b2 − a1)n1
.

The explicit form of the vacuum τ -function reads

τ 0
m = (−1)[n1(n1−1)+n2(n2−1)+m(m+1)]/2

(a1 − b1)n1(n1+m)(a2 − b2)n2(n2−m)

(a1 − a2)
n1n2(b1 − b2)

(n2−m)(m+n1)

(b1 − a2)n2(n1+m)(a1 − b2)n1(n2−m)
.

The functions φ0
α,m, α = 1, . . . , N have the form

φ0
α,m = 1

t − cα

(t − a1)
n1(t − a2)

n2(cα − b1)
n1+m(cα − b2)

n2−m

(cα − a1)n1(cα − a2)n2(t − b1)n1+m(t − b2)n2−m

and can be used, due to proposition 10, to construct the τ -function for arbitrary N.
Let L = Fq� ⊂ K be a field of rationality of all the points used in the construction. Recall

[23] that if q = pk then the Galois group G(L/K) is the cyclic group of order � and is generated
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by σk
F , where σF is the Frobenius automorphism of L defined as σF (a) = ap. Therefore

possible systems of points cα and pairs {dβ, eβ } can be grouped into K-rational clusters (orbits
of the group G(L/K)) with lengths being divisors of �. In the standard nomenclature the
clusters of length 1 correspond to solitons, and clusters of length 2 give rise to breathers (the
positions of poles cα of the wavefunctions must be symmetric with respect to the complex
conjugation). In finite fields we encounter new types of solutions (without direct analogues in
the complex field case) which come from clusters of lengths greater then 2. The analogue of the
breather solution will be presented in example 1. Let us call the N-soliton solution of order � the
K-rational N-soliton solution with parameters in extension of K of order �. In this terminology
the standard N-soliton solutions are of order 1, while the breather solution is a two-soliton
solution of order 2. A three-soliton solution of order 3 and a two-soliton solution of order 4
are presented in examples 2 and 3. We remark that the above terminology is not completely
distinctive.

Note that the variables n1, n2 and m enter exponentially in the functions τ 0
m and φ0

α,m This
implies that the τ -function is periodic in n1, n2 and m with the periods being divisors of q� −1,
which is the order of the cyclic multiplicative group L∗.

Finally, we present examples. For any example we describe the fields K and L giving
first the numbers q = pk and � and then writing down the polynomial w(x) over Fp used to
construct multiplication in the field L. We represent elements of L as elements of the vector
space F

kl
p . Then we give the points used in the construction of the solution of the Hirota

equation presenting also the action of the Galois group G(L/K) on them.

Example 1. A breather solution of the Hirota equation in F5. Parameters of the solution take
values in extension F52 of F5 by the polynomial w(x) = x2 + x + 1. The corresponding Galois
group reads G(F52/F5) = {id, σ }, where σ 2 = id . The parameters of the solution are chosen
as follows:

a1 = (00), a2 = (02), b1 = (01), b2 = (04)

c1 = (10), c2 = σ(c1) = (44)

d1 = (11), d2 = σ(d1) = (40)

e1 = (13), e2 = σ(e1) = (42).

This solution is presented in figures 1 and 2. The elements of F5 are represented by:
—(00), —(01), —(02), —(03), —(04).

The periods in variables n1, n2 and m are 12, 24 and 24, respectively. Note that the figure
for m = 5 can be obtained from the figure for m = 1 by a shift in n2 by 4.

Example 2. A three-soliton solution of order 3 of the Hirota equation in F5. This solution is
the first one in the generalized breather class, a new type not present in the standard complex
field case. Parameters of the solution take values in extension F53 of F5 by the polynomial
w(x) = x3 + x2 + 1. The corresponding Galois group reads G(F53/F5) = {id, σ, σ 2}, where
σ 3 = id. The parameters of the solution are chosen as follows:

a1 = (004), a2 = (003), b1 = (002), b2 = (001)

c1 = (022), c2 = σ(c1) = (120), c3 = σ 2(c1) = (412)

d1 = (020), d2 = σ(d1) = (123), d3 = σ 2(d1) = (410)

e1 = (010), e2 = σ(e1) = (314), e3 = σ 2(e1) = (230).

This solution is presented in figures 3 and 4. The elements of F5 are represented as in
example 1. From the figures one can deduce that the periods in all variables n1, n2 and m are
maximal and equal to 124.
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Figure 1. A breather solution of the Hirota equation in F5 described in example 1; n1 ranges from
0 to 28 (directed to the right), n2 ranges from 0 to 28 (directed up), m = 1.

Figure 2. A breather solution as in figure 1 for m = 2 and m = 5.

Figure 3. A breather solution of order 3 of the Hirota equation in F5 described in example 2; n1
ranges from 0 to 8 (directed to the right), n2 ranges from 0 to 8 (directed up), m = 0, 4 and 62.
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Figure 4. A ‘global’ view of the first picture (m = 0) of the generalized breather solution presented
in figure 3; n1 and n2 range from 0 to 129.

Figure 5. A two-soliton solution of order 4 of the Hirota equation in F4; n1 and n2 range from 0
to 59,m = 0.
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Example 3. The aim of this example is to present a solution in a ‘small’ field F4 obtained
from parameters taking values in a relatively bigger field F256. The field F256 is chosen
as the extension of F2 by the polynomial w(x) = x8 + x6 + x5 + x + 1. The elements
(00 000 000), (00 000 001), (11 110 000) and (11 110 001) of F256 = F28 form a subfield
isomorphic to F4. The Galois group is generated by σ = σ 2

F , and reads G(F256/F4) =
{id, σ, σ 2, σ 3}, where σ 4 = id. The parameters of the solution are as follows:

a1 = (00000000), a2 = (00000001), b1 = (11110000), b2 = (11110001)

c1 = (00010010), c2 = σ(c1) = (11100011)

d1 = (00001010), d2 = σ(d1) = (00001001)

e1 = σ 2(d1) = (00011000), e2 = σ 3(d1) = (11101010).

Here the points c1 and c2 are chosen from a subfield of F256 isomorphic to F16 and form a
cluster of length 2. The points c1, c2, d1 and d2 form a cluster of length 4 in a way compatible
with the F4-rationality condition (2). We obtain therefore a two-soliton solution of order 4,
which also has no direct counterpart in the complex field case.

The solution is presented in figure 5 for m = 0; The elements of F4 are represented by:
—(00000000), —(00000001), —(11110000), —(11110001). The period in all

variables is the same and equals 51.

5. Conclusion and remarks

In this paper, motivated by recent developments of integrable discrete geometry, we presented
the algebro-geometric method of construction of solutions of the Hirota equation over finite
fields. It turns out that the main ideas used for integrable systems over the field of complex
numbers, e.g., application of the Riemann–Roch theorem, can be transferred to the level of
finite fields without essential modifications. We would like to stress that although finite fields
consist of a finite number of elements the corresponding algebraic curves have an infinite
number of points (taking into account the algebraic completion of the field) which gives rise
to infinite families of solutions of the equation.

We have presented examples of pure (for the simplest algebraic curve being the projective
line) multisoliton solutions of the Hirota equation. Less trivial examples which use techniques
on Jacobians of algebraic curves will be the subject of another paper [4].
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